
Abusing Bleeding Edge Web
Standards for AppSec Glory
Bryant Zadegan Ryan Lester
Advisor/Mentor CEO, Co-Founder
Mach37 Cyph

keybase.io/bryant hacker@linux.com
@eganist @TheRyanLester

• Does AppSec stuff,
usually.

• Mentors security
startups, sometimes.

• “Mentors” others on
AppSec, occasionally.

• Paid a buck to make
Steve Ballmer dance,
but just once.

• Runs an E2EE
communication startup

• Codes for an E2EE
communication startup

• Ran QA automation at a
rocket factory

• Got sued by Napster
(and not for piracy)

Bleeding Edge Web Standards

• For Your (Ab)use
(FOSS + Demo)

(Demo)
(Demo)

Potential Pain:

But Why?

Source: Harold & Kumar Go to White Castle

• New standards are
frequently drafted.

• Many introduce
unforeseen
complications.

• Novel uses
encourage
future
tweaks.

S R I

• Validate resources beyond your trust (e.g.
CDNs)
<script
 src="https://code.jquery.com/jquery.min.js"
 integrity="sha256-[hash] sha256-[hash2]"
 crossorigin="anonymous">
</script>

• w3.org/TR/SRI/
• caniuse.com/subresource-integrity

https://www.w3.org/TR/SRI/
http://caniuse.com/subresource-integrity

BUILDER DEMO

heisenberg.co/sridemo/
Praise be to the demo gods

https://heisenberg.co/sridemo/

heisenberg.co/sridemo/sameorigin
(͡° ͜ʖ ͡°)

https://heisenberg.co/sridemo/sameorigin

SRI

Per the SRI Spec:

...so we implemented it for you.

NOTE

On a failed integrity check, an error event is fired. Developers
wishing to provide a canonical fallback resource (e.g., a resource
not served from a CDN, perhaps from a secondary, trusted, but
slower source) can catch this error event and provide an
appropriate handler to replace the failed resource with a different
one.

BUILDER DEMO

heisenberg.co/srifallbackdemo/
Kneel to the demo gods

https://heisenberg.co/srifallbackdemo/

SOURCE (Simplified BSD)

github.com/cyph/sri-fallback
Do source gods even exist?

https://github.com/cyph/sri-fallback

CSP

• Combines semi-strict header with strict meta.
• Allows for pre-loading of trusted complex

logic.
• Does not work for the verbs frame-
ancestors, report-uri, or sandbox.

(We didn’t actually trademark this, but it’s a good name.)

BUILDER DEMO

heisenberg.co/metacspdemo/
Fall on thy sword for the demo gods.

https://heisenberg.co/metacspdemo/

CSP

• Best for adapting a semi-recent application for
use with CSP.

• Application’s trusted static logic is allowed to
execute on initial load.

• Meta-Hardening prevents dynamic content
from potentially executing later on.

• This can break sites. Use !
– (Chrome 46+ only; no reporting in Firefox 😐)

• Quickstart:
Public-Key-Pins :
max-age=5184000; includeSubdomains;
pin-sha256="az9AwClWuHM+fYV+d8Cv9B4sAwdcoUqj93omk18O/pc=";
pin-sha256="5UONcYAsFtYscIlFlm4+aodoL20RRHzGaOeoSNEZ+iA="

"https://report-uri.io/report/[id]/reportOnly"

• tools.ietf.org/html/rfc7469
• caniuse.com/hpkp

https://tools.ietf.org/html/rfc7469
http://caniuse.com/hpkp

HPKP + Rapid Key Rotation can trap content:
– to enable in-browser code signing
– control content changes and harden SRI.
– to enable nuanced web content blocking. (NetSec)
– to track users…
– to be total jerks…

...in ways we shouldn't put in print.
(Thanks Jann Horn @ Cure53 for putting us onto this!)

Wait, in-browser code signing? No extensions?
• Used HPKP Suicide to pin code-signing logic

and keys into the AppCache/Service Worker.
• Logic fetches and validates content from a

different origin. Nearly Trust-On-First-Use.

This was so novel, Cyph had to file for a patent
(protecting this is why this slide is even here),
but you come fairly close to this for free if you...

Control local storage updates! Harden SRI!
• Set HPKP max-age to around your deployment

schedule, but no more than 60 days.
• Rotate routinely.

Benefits: retain control of front-end content
between releases, mitigate risks of SRI hash
tampering server-side.

BUILDER DEMO

redskins.io
I don't believe in demo gods

https://redskins.io

Web Content Gateway e.g. [SomeVendor]?
Lock your users out of sites even when they're
not on your network!
1. For flagged domains, set HPKP headers.
2. Rotate keys weekly at the web gateway.

Done!
(By us disclosing it, is this now prior art? -)

Oh... https://crt.sh/?id=19538258

Issuer:
commonName = VeriSign Class 3 Public
 Primary Certification
 Authority - G5

Subject:
commonName =

organizationalUnitName = Symantec Trust Network
organizationName = "Blue Coat Systems, Inc."

https://crt.sh/?id=19538258

User tracking?
Well, we really shouldn't talk about this…

But since this is DEF CON...

…let's track users!

Pre-requisites:
Lots of (sub)domains to pin
Browsers that allow HPKP incognito
Rapid Key Rotation

 (Thanks! -)

Server setup:

1. Point *.cyph.wang at the backend server

2. Set POST /set to add ${clientIP}-${subdomain} to cache
and return 200 response with valid HPKP header

3. Set GET /check to return 418 error response if ${clientIP}-
${subdomain} is in the cache; otherwise return 200 response (no
HPKP header)

4. Set a 12-hour interval to delete the current TLS key + IP cache then
generate a new TLS key + cert for [0-31].cyph.wang and $(date
+%s).cyph.wang

Client JavaScript:

1. GET [0-31].cyph.wang/check and reconstruct a uint32 ID from
the resulting binary (with each successful request being 0 and each
failure being 1)

2. If ID is 4294967295 (max uint32), assume an error and throw an
exception

3. If ID is 0, generate a new ID via crypto.getRandomValues, convert
it to binary, iterate over the bits, and POST each 1 bit to the correct index
within [0-31].cyph.wang/set

4. Return final ID to calling code

Considerations:
Risk: DoSing tracker domains as a public service

1. Domain whitelist for your own tracker, or
2. App-issued and tracker-verified nonce if analytics

is your business model.

The pattern we described is among those here:
https://tools.ietf.org/html/rfc7469#section-5

https://tools.ietf.org/html/rfc7469#section-5
https://tools.ietf.org/html/rfc7469#section-5
https://tools.ietf.org/html/rfc7469#section-5
https://tools.ietf.org/html/rfc7469#section-5
https://tools.ietf.org/html/rfc7469#section-5

BUILDER DEMO

cyph.wang
I don't believe in demo gods

https://cyph.wang

SOURCE (New BSD)

github.com/cyph/hpkp-supercookie
Do source gods even exist?

https://github.com/cyph/hpkp-supercookie/

…to be total jerks?
we really shouldn't talk about this…

Who are we kidding?

This is DEF CON.

Pre-requisites:
A high-traffic target
A way to shell the box
A free certificate authority

 (Sorry /)

1. Determine target
2. Generate ransom keypair (the recovery key)
3. Pwn target webserver.
4. Generate new lockout keypair + CSR

5.
6. Profit!

 While owned users < n
1. "public-key-pins:

max-age=31536000; includeSubdomains;
pin-sha256= ;
pin-sha256= "

2. If owned users = n,
1. Generate new lockout keypair + CSR

2. Blow old lockout keypair. This locks out n users.
3. n = 0

isis.io
We're going to regret this.

https://isis.io

Considerations (i.e. why this is a High):
1. Let's Encrypt limits you to 20 certs per week.
2. Chrome + Firefox have HPKP lockout

mitigations (more later)
3. You still need to pop the box.

Programmatic Mitigations:

Chromium:

Firefox:

Let's Encrypt:

Host Mitigations
1. Use DNS Certification Authority

Authorization (CAA) – RFC 6844.
2. Use HPKP.
3. Don't get popped.

End User Mitigations (Clearing key pins):
1. chrome://net-internals/#hsts
2. (alt): clear any irrelevant part of your

cache. "due to a curly brace mishap, we've been
clearing it over-aggressively for years."
(yes, we reported this one too. CVE-2016-1694)

3. about:config >>
security.cert_pinning.enforcement_level = 0,
visit site to take new header, re-enable.

SOURCE (New BSD)

github.com/cyph/ransompkp
Do source gods even exist?

https://github.com/cyph/ransompkp

Hat Tip

To Geller Bedoya, Jonn Callahan, Jann Horn (and all of Cure53),
Samy Kamkar, Jim Manico, Mike McBryde, Garrett Robinson, and
John Wilander, as well as the Chrome, Firefox, and Let's Encrypt

security teams for their contributions.

Thank You!

Bryant Zadegan Ryan Lester
Advisor/Mentor CEO, Co-Founder
Mach37 Cyph

keybase.io/bryant hacker@linux.com
@eganist @TheRyanLester

	Abusing Bleeding Edge Web Standards for AppSec Glory
	@eganist 	@TheRyanLester
	Bleeding Edge Web Standards
	But Why?
	SubResource Integrity
	BUILDER DEMO
	CVE-2016-1636 Demo
	SRI Fallback
	BUILDER DEMO
	SOURCE (Simplified BSD)
	CSP Meta-Hardening™
	BUILDER DEMO
	CSP Meta-Hardening™
	Http Public Key Pinning
	HPKP Suicide™
	HPKP Suicide™
	HPKP Suicide™�for Builders
	HPKP Suicide™�for Builders
	BUILDER DEMO
	HPKP Suicide™�for Builders
	HPKP Suicide™�for Builders
	HPKP Suicide™�for Builders
	HPKP Suicide™�for Builders
	HPKP Suicide™�for Builders
	HPKP Suicide™�HPKP SuperCookies
	HPKP Suicide™�HPKP SuperCookies
	HPKP Suicide™�HPKP SuperCookies
	BUILDER DEMO
	SOURCE (New BSD)
	HPKP Suicide™�for Builders
	HPKP Suicide™�for Breakers
	HPKP Suicide™�for Breakers
	HPKP Suicide™�RansomPKP
	HPKP Suicide™�RansomPKP
	Breaker Demo
	HPKP Suicide™�RansomPKP
	HPKP Suicide™�RansomPKP
	HPKP Suicide™�RansomPKP
	HPKP Suicide™�RansomPKP
	SOURCE (New BSD)
	Hat Tip
	Thank You!

